

November 21, 2024

Foundation Design & Ground Improvements

Georgia Ports Mason Mega Rail Project

Guoming Lin, Ph.D., G.E., BC.GE

Vice President/Senior Consultant

- Fourth largest in the US
- 1,345-acres, 10,000 ft berth, largest Single-Terminal in the U.S
- Channel Depth of 47 ft

Outline

- Project Overview
- Geotechnical Challenges
- Ground Improvements & Foundations
 - ✓ Rail Yard and Tracks- dynamic compaction, driven piles, and geocell wall
 - ✓ Drainage Structures wick drain and preloading
 - ✓ SR 25 Bridge MSE walls versus pile-supported bridge
 - ✓ Rail Bridge Rigid inclusions with thermal integrity profiling (TIP)

Garden City Terminal 2018-Two rail facilities

Prior to Mega Rail Construction

Mason ICTF:

- Norfolk Southern
- Top Pick Operation
- 300,000 Lift Capacity

Chatham ICTF:

- CSX
- RTG Operation
- 200,000 Lift Capacity

Mega Rail Project Layout

Project Components:

- Construct 20 miles of new rail connecting two rail facilities
- Rebuild SR 25 Bridge over Pipemakers Canal
- 10 Rail Mounted Gantry (RMG) cranes
- Double lifting capacity while maintaining existing terminal throughput (1M lifts/year)
- The largest on-terminal rail facility in North America

Outline

- Project Overview
- Geotechnical Challenges
- Ground Improvements & Foundations
 - ✓ Rail Yard and Tracks- dynamic compaction, driven piles, and geocell wall
 - ✓ Drainage Structures wick drain and preloading
 - ✓ SR 25 Bridge MSE walls versus pile-supported bridge
 - ✓ Rail Bridge Rigid inclusions with thermal integrity profiling (TIP)

Geotechnical Challenges

- The planned rail yard was an unregulated landfill-Union Camp
- About 12 feet of waste
- Waste composed of wood logs, paper, construction debris mixed with soils

Laye r	Depths	Thickn ess (ft)	Material Description	SPT - N ₆₀
1	0 to 1	1	Topsoil: silty sands with root	N/A
2	1 to 13	12	Landfill Material (Trash/wood debris mixed with sandy soils)	N/A
3	13 to 30	17	Very soft to soft clays	2 to 4
4	30 to 37	7	Medium dense to dense silty sands to sandy silts	7 to 22
5	Below 37	>50	The Marl formation (sandy clay or clayey sands)	30 to 50+

Settlements and slope stability.

Outline

- Project Overview
- Geotechnical Challenges
- Ground Improvements & Foundations
 - ✓ Rail Yard and Tracks- dynamic compaction, driven piles, and geocell wall
 - ✓ Drainage Structures wick drain and preloading
 - ✓ SR 25 Bridge MSE walls versus pile-supported bridge
 - ✓ Rail Bridge Rigid inclusions with thermal integrity profiling (TIP)

Dynamic compaction:

Repeated drops of a heavy tamper in a planned grid pattern to densify loose soils and collapse voids.

High Energy Dynamic Compaction

Landfill Site	Compaction Energy=7 ton—ft/ft ³	
Initial Drop	13 x 13 ft grid	
Initial Drop Tamper Weight (tons) and Drop Height	16.5 tons by 60 ft	
Number of Drops/Passes	Two passes, 4 or 5 drops at each crater	
Typical Crater Depth	4 to 5 ft	
Ironing Pass Tamper Weight (tons) and Drop Height (ft)	10 tons by 10 ft	
Number of Passes	One pass in 8 x 8 ft grid	
Typical Crater Depth (ft)	0.1 to 0.2 ft	

High Energy Initial Pass

- 16.5-ton weight, 60 ft drop
- Two passes
- 4 or 5 drops at each crater
- Crater depth 4 to 5 ft

Quality Control

Proofrolling using a loaded dump truck

Sections passing Proofrolling

- Place a layer of geogrid
- Structural fill and compaction
- Ballast stone for rail tracks

Special Situation High Water Table and Rain

Problem

- After DC and rough grading, the ground became unstable;
- Pumping under feet;
- Groundwater near the surface

Solutions

- Cut ditches and pump to lower the water table
- Wait two weeks for the ground to regain strength

Sections Failed Proofrolling

- Investigate using test pits;
- Undercut deleterious material like paper and wood;
- Backfill with structural fill with geogrid at the bottom.

Dynamic Compaction Work Area

- An unregulated industrial landfill (by a paper mill);
- Low-lying areas next to a drainage canal;
- New rail tracks and chassis parking

New Rail Tracks—allow up to 8 inches of settlement

Chassis Yard – very light loads

Wetlands with soft soils

- 4 to 6 ft of loose sands
- Underlain by soft clays;
- Sand layer too thick for vibratory roller;
- Avoiding disturbing deeper clays

Low Energy Compaction of Loose Sand

- 10-ton, 8-ft square steel plate;
- 20 ft high drop;
- 100% coverage of the compaction
- Up to 12" craters

Geocell Wall Along Wetland

- Geocell wall more flexible than the conventional castin-place concrete wall;
- Relax subgrade requirements;

GEOCELL MSE WALL TYPICAL SECTION
SCALE: NOT TO SCALE

No rigid concrete footing -- MSE No metal wires for corrosion – Gabion Wall

Outline

- Project Overview
- Geotechnical Challenges
- Ground Improvements & Foundations
 - ✓ Rail Yard and Tracks- dynamic compaction, driven piles, and geocell wall
 - ✓ Drainage Structures wick drain and preloading
 - ✓ SR 25 Bridge MSE walls versus pile-supported bridge
 - ✓ Rail Bridge Rigid inclusions with thermal integrity profiling (TIP)

Rail Bed

Soil Profile below Ditch

Preloading with wick drains

Outline

- Project Overview
- Geotechnical Challenges
- Ground Improvements & Foundations
 - ✓ Rail Yard and Tracks- dynamic compaction, driven piles, and geocell wall
 - ✓ Drainage Structures wick drain and preloading
 - ✓ SR 25 Bridge MSE walls versus pile-supported bridge
 - ✓ Rail Bridge Rigid inclusions with thermal integrity profiling (TIP)

SR25/Main Street over Pipemakers Canal

- Old Bridge 90 ft long--New Bridge 1261 ft long
- 23'-9" max vertical clearance for new rail lines, GPA Mega Rail Project
- Fast track: Traffic detoured for 365 days

- Hydraulically push instrumented cone into the ground
- Four channels of digital data
- Continuous soil profiles
- Operator independent

Settlement and Stability Analysis

- ☐ South wall settlement: 6 to 18 inches;
- North wall settlement: 4 to 15 inches;
- ☐ Global stability: FS<1.

Recommendations:

☐ Pile-supported load transfer platform (LTP) to support the MSE walls.

North Bridge under construction

Outline

- Project Overview
- Geotechnical Challenges
- Ground Improvements & Foundations
 - ✓ Rail Yard and Tracks- dynamic compaction, driven piles, and geocell wall
 - ✓ Drainage Structures wick drain and preloading
 - ✓ SR 25 Bridge MSE walls versus pile-supported bridge
 - ✓ Rail Bridge Rigid inclusions with thermal integrity profiling (TIP)

Two Rail Bridges Across Pipemakers Canal

- Canal was realigned –doubled the bridge length;
- Very soft soils on canal embankments;

- Rigid inclusion to improve embankment;
- Limited bridge length to new canal-3 spans

Rigid Inclusions

- Auger cast piles
- Reinforcement along the canal edge to resist shear;
- No reinforcement interior to control settlements;
- Load transfer platform over rigid inclusions (piles)

Pile Integrity Testing using Thermal Integrity Profiling (TIP)

Evaluate pile cross-section
 based on the temperature of
 heat from concrete curing.

- TIP detected necking at 6 ft below pile top;
- Excavation revealed a layer of geogrid cut into the piles.
- Deemed acceptable.

Diameter vs Depth - 41 - 03/15/19 01:10 (11h:2m) Pile Dia. Profile Pile Avg. Dia. Necking, < 18" 5- Pile Nom. Dia. Depth (ff) Budging-> 18" Nom Dia=18" Diameter (in) 30 TIP-R Version 2018.14.0.0

Southeast Georgia Hospital Thermal Integrity Profiling (TIP)

TIP Results were field confirmed

Summary

- Selection of ground improvements based on effectiveness, cost, and schedule and performance requirements
- Dynamic compaction to compress landfill material for rail yards and chassis parking. Undercut and geogrid reinforcement to stabilize the subgrade
- Driven prestressed piles rail-mounted gantry (RMG) cranes, highway bridges and rail bridges
- Geocell walls for a more flexible wall
- Preloading with wick drains for drainage culverts
- Rigid inclusions for rail bride embankment stabilization and settlement control
- Thermal integrity profiling (TIP) is an effective tool to check pile/draft crosssection and integrity

Acknowledgments

Georgia Ports Authority (GPA)

Moffatt Nichol - Engineer

Astra Group (GC)

Dynamic Compaction:

Densification, Inc.

TerraSystems

Rigid Inclusions: Berkel with Dan Brown & Associates

Civil Engineering Magazine

Feb/March 2023 Feature

Thank you!

Guoming Lin, Ph.D., G.E., BC.GE.

Vice President/Senior Consultant D (912) 200 9114

Guoming.Lin@terracon.com

